
Computers in Biology and Medicine 134 (2021) 104478

Available online 9 May 2021
0010-4825/© 2021 Elsevier Ltd. All rights reserved.

Multiclass diagnosis of stages of Alzheimer’s disease using linear 
discriminant analysis scoring for multimodal data☆ 

Weiming Lin a,b, Qinquan Gao c,d, Min Du c,e, Weisheng Chen f, Tong Tong c,g,* 

a School of Opto-Electronic and Communication Engineering, Xiamen University of Technology, Xiamen, 361024, China 
b Fujian Key Laboratory of Communication Network and Information Processing, Xiamen University of Technology, Xiamen, 361024, China 
c College of Physics and Information Engineering, Fuzhou University, Fuzhou, 350116, China 
d Imperial Vision Technology, Fuzhou, 350001, China 
e Fujian Provincial Key Laboratory of Eco-industrial Green Technology, Wuyi University, Wuyishan, 354300, China 
f Department of Thoracic Surgery, Fujian Cancer Hospital, Fuzhou, 350001, China 
g Fujian Key Lab of Medical Instrumentation & Pharmaceutical Technology, Fuzhou University, Fuzhou, 350116, China   

A R T I C L E  I N F O   

Keywords: 
Alzheimer’s disease 
Mild cognitive impairment 
Multiclass 
Multimodal 
Linear discriminant analysis 
Extreme learning machine 

A B S T R A C T   

Alzheimer’s disease (AD) is a progressive neurodegenerative disease, and mild cognitive impairment (MCI) is a 
transitional stage between normal control (NC) and AD. A multiclass classification of AD is a difficult task 
because there are multiple similarities between neighboring groups. The performance of classification can be 
improved by using multimodal data, but the improvement could be limited with inefficient fusion of multimodal 
data. This study aims to develop a framework for AD multiclass diagnosis with a linear discriminant analysis 
(LDA) scoring method to fuse multimodal data more efficiently. Magnetic resonance imaging, positron emission 
tomography, cerebrospinal fluid biomarkers, and genetic features were first preprocessed by performing age 
correction, feature selection, and feature reduction. Then, they were individually scored using LDA, and the 
scores that represent the AD pathological progress in different modalities were obtained. Finally, an extreme 
learning machine-based decision tree was established to perform multiclass diagnosis using these scores. The 
experiments were conducted on the AD Neuroimaging Initiative dataset, and accuracies of 66.7% and 57.3% and 
F1-scores of 64.9% and 55.7% were achieved in three- and four-way classifications, respectively. The results also 
showed that the proposed framework achieved a better performance than the method that did not score 
multimodal data and the methods in previous studies, thereby indicating that the LDA scoring strategy is an 
efficient way for multimodalities fusion in AD multiclass classification.   

1. Introduction 

As people aged above 65 years are at a high risk of developing Alz-
heimer’s disease (AD) [1], AD has become one of the major concerns 
related to the health of elderly people. Patients with AD often suffer from 
memory loss, language disorders, and disorientation. Consequently, a 
lot of time and energy is required to take care of patients with AD, which 
results in considerable stress on the families or caregivers. There are still 
no efficient drugs or treatments to cure AD, and early diagnosis of AD is 
crucial for timely therapeutic care to impede its progression. With the 
aging of the global population, a growth in the number of AD patients is 

expected, moreover, it was predicted that the number of patients 
suffering from AD will triple in 2050 [2]. Therefore, the computer-aided 
diagnosis of AD has attracted considerable interest in recent years. 

AD-related biomarkers are used for its diagnosis, such as magnetic 
resonance imaging (MRI) features that contain information on the at-
rophy pattern of neurodegeneration [3], fluorodeoxyglucose positron 
emission tomography (FDG-PET) features that contain metabolic 
changes related to AD [4], and the concentrations of total tau (T-tau), 
phosphorylated tau (P-tau), and the 42-amino acid isoform of amyloid-β 
peptide (Aβ42) in the cerebrospinal fluid (CSF) [5]. In addition, the 
apolipoprotein E (APOE) ε4 gene is also an important risk factor of AD 
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[6]. Several studies have used these biomarkers to diagnose AD, which 
are binary classifications for AD in comparison with normal control 
(NC). However, there is also a transitional stage called mild cognitive 
impairment (MCI) between AD and NC. Therefore, multiclass diagnoses 
such as AD versus MCI versus NC are more practical. 

In this study, we propose a framework that can diagnose AD using 
three-way classification (AD versus MCI versus NC) and four-way clas-
sification (AD versus progressive MCI (pMCI) versus stable MCI (sMCI) 
versus NC) with multimodal data including those related to MRI, posi-
tron emission tomography (PET), CSF, and genes. pMCI is defined as the 
MCI that will eventually convert to AD, and sMCI is the MCI that will not 
convert to AD. After performing the preprocesses of age correction, 
feature selection, and feature reduction, we implemented linear 
discriminant analysis (LDA) [7] for each modality and calculated a score 
to present the progress of AD using this modality. Then, a binary extreme 
learning machine (ELM)-based [8] tree decision strategy was utilized for 
multiclass diagnosis using these scores. Experiments were conducted 
using data from the AD Neuroimaging Initiative (ADNI) dataset, and the 
performance of the proposed framework improved when compared to a 
method using raw features. The contributions of this study are as 
follows:  

i) LDA was implemented to calculate the scores from multimodal data, 
and these scores represent the information regarding the progress of 
AD in the corresponding modalities. In this way, the feature numbers 
were balanced for all modalities, which finally resulted in only one 
score, and the classifier could decide which modality was dominant 
without the influence of feature numbers.  

ii) A binary ELM-based tree decision strategy was used for multiclass 
diagnosis, which demonstrated a superior performance when 
compared to support vector machine (SVM)-based multiclass 
classification. 

The remainder of this paper is organized as follows. Section 2 briefly 
introduces the relevant studies. Section 3 presents the proposed method 
in detail. Section 4 presents the experimental data, settings, and results. 
In Section 5, we discuss the findings and limitations of this study. 
Finally, the conclusions of this study are presented in Section 6. 

2. Related works 

In previous studies, numerous methods have been proposed to 
discriminate AD from NC, and accuracies above 96% have been ach-
ieved [9,10] as there are apparent differences between these two groups, 
which makes it easy to discriminate between AD and NC. Certain studies 
have focused on predicting AD conversion from MCI by classifying pMCI 
and sMCI and have achieved accuracies above 80% [11,12]. However, 
the multiclass diagnosis of AD is a more practical but tougher task than 
binary classification tasks. In a comprehensive study [13], only a few 
algorithms have achieved an accuracy of over 60% in the three-way 
classification. Furthermore, there are also studies [14,15] that attemp-
ted a four-way diagnosis, which is more difficult than the three-way 
classification and is less accurate. 

With different modalities of data reflecting AD-related pathological 
changes in different aspects, it is intuitive to fuse multimodal data to 
obtain complemented information and improve the performance of AD 
diagnosis. The simplest way to utilize multimodalities is to directly 
concatenate them. However, direct concatenation is not optimal, and 
there are better ways to fuse multimodal data, such as combining these 
data in a kernel space [10,16]. In recent years, deep learning techniques, 
such as convolutional neural networks (CNNs), have been employed to 
extract and fuse multimodal data from neuroimages, which can be used 
to improve the accuracy of AD diagnosis or prediction [17–19]. In the 
case of multiclass AD diagnosis, certain methods were proposed to fuse 
multimodal data and boost the accuracy. Tong et al. [20] employed a 
nonlinear graph fusion for four modalities in a three-way diagnosis of 

AD, and achieved an accuracy of 60.2%. Thung et al. [21] achieved a 
three-way diagnosis accuracy of 65.8% by using multitask deep learning 
with multimodal data of MRI, PET, and demographic information. Fang 
et al. [11] used a supervised Gaussian discriminative component anal-
ysis algorithm to delineate subtle changes between groups and achieved 
an accuracy of 66.29% for three-way classification. For four-way clas-
sification, Liu et al. [22] designed a zero-masking deep learning archi-
tecture for fusion of MRI and PET features and achieved an accuracy of 
53.8%. Yao et al. [14] adopted MRI features combined with de-
mographic and clinical data and achieved an accuracy of 54.4% by 
employing a relative importance-based feature selection and turning the 
four-way classification into five binary classification problems. Liu et al. 
[15] proposed a deep multitask multichannel CNN for joint classifica-
tion and regression, and the accuracy of this four-way classification was 
51.8%. However, there are biases in the feature numbers of modalities, 
which may lead to a bias in a modality with several features and hinder 
effective data fusion. The purpose of this study is to balance the feature 
numbers before fusing different modalities by using a scoring method 
with LDA so that the classifier can determine the weight of each mo-
dality and improve the efficiency of data fusion. 

3. Methods 

Four modalities were used in this study. The MRI was first analyzed 
using the FreeSurfer software [23]. FreeSurfer is a powerful tool for 
thickness calculation and whole brain segmentation and is usually used 
in AD analysis [11,24,25]. A total of 345 morphological features, 
including volume, surface area, and cortical thickness of cerebral re-
gions, were provided by FreeSurfer. As 32 features were unavailable for 
most subjects, only 313 features were chosen as MRI features. For PET 
images, there are five regions that are considered to be predominantly 
related to AD, i.e., the left angular, right angular, bilateral posterior 
cingulate, left inferior temporal, and right inferior temporal regions 
[26]. The mean, maximum, minimum, and standard deviation values of 
the intensities of these five regions were calculated from PET scans as 
features. Thus, 20 PET features were obtained. The other modalities 
included three CSF biomarkers, i.e., levels of Aβ42, T-tau, and P-tau. 
Moreover, the genetic feature is a single variable indicating the presence 
of the APOE ε4 gene. Therefore, there were a total of 337 multimodal 
features for each subject. The overall framework of the proposed 
approach is illustrated in Fig. 1. First, the MRI features were pre-
processed with age correction and feature selection for the following two 
reasons: the cerebral atrophy might not only be due to AD-related but 
also age-related factors, and not all MRI features were related to AD. 
Then, principal component analysis (PCA) [27] was implemented on 
MRI and PET to eliminate useless and interferential components. Then, 
all types of features (with CSF and genetic features combined as one) 
were individually processed using LDA [7], and only the most discrim-
inative component was calculated as a score for each modality. Finally, 
three scores, together with the age, were input into the decision tree 
consisting of binary ELMs [8], which were pretrained with corre-
sponding pairs of groups. 

3.1. Preprocessing of magnetic resonance imaging features 

The cerebral atrophy of AD patients is not only caused by AD, but 
also related to normal aging. Consequently, there might be age-related 
effects among MRI features. To reduce the interference of these ef-
fects, we first estimated the effects by fitting a linear regression model 
with MRI features from NC subjects [28]. Let us assume that there are N 
healthy subjects. fm ∈ R1×N is the vector of N values for the mth feature 
and ψ∈R1×N is the vector of the ages of the subjects. When the linear 
model fm = amψ + bm was fitted, am can be regarded as an age-related 
effect for the mth feature. Then, we aligned the age effect to a target 
age for all subjects by calculating new features as f’m = am (C-ψ) + fm, 
where C is the target age all subjects were aligned. 
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As MRI features were calculated with global brain MRI analysis, 
features that are unrelated to AD were also present. To eliminate the 
interference of these unrelated features, we considered feature selection 
with the least absolute shrinkage and selection operator (LASSO) algo-
rithm [29]. LASSO is an L2,1-norm sparse regression model with the 
following formula: 

min
α

0.5‖y − Dα‖2
2 + λ‖α‖1 (1)  

where D is an N × M feature matrix that consists of N training samples 
with M features in each sample, and y ∈ RN×1 is a vector of N labels. α∈R 
M×1 is the target sparse coefficient. Moreover, λ is a penalty coefficient 
that controls the sparseness of α, which was set to 0.015. After solving 
this model, only certain coefficients in α would be nonzero for the L1- 
norm penalty, and these nonzero coefficients indicate that the corre-
sponding features are important for predicting the labels. Therefore, the 
features with nonzero coefficients were selected as discriminative fea-
tures, and the others were discarded. It should be noted that the training 
samples in D were from AD and NC subjects who had MRI data but 
lacked at least one other modality. Therefore, these samples were not 
present in the validation experiments. Thus, the double-dipping problem 
was avoided. 

3.2. Features reduction with principal component analysis and modalities 
scored using linear discriminant analysis 

PCA is an unsupervised learning method that uses an orthogonal 
transformation to convert correlated features into linearly uncorrelated 
features [27]. The correlated parts of the original features are fused into 
new features that appear as major components, and the remaining un-
correlated parts appear as interferential components. As there could be 
several correlations between MRI features and PET features, we imple-
mented PCA on MRI and PET features. After PCA, the major components 
were retained, and the other components were discarded as interferen-
tial components. 

The LDA-based scoring strategy is a key process in this approach. 
Different modalities are known to reflect different pathological changes 
in AD. When NC is converted to AD, the degree of pathological change in 
each modality can be assumed to progress along a path. The scoring 
strategy is to project the progressing path onto a line with LDA and 
calculate a score that represents the degree of pathological change. 
Using different modalities, we can obtain different scores representing 
different pathological changes. LDA is a supervised learning algorithm 
that can transform and project data, with the knowledge of class labels, 

onto a maximally discriminating vector, on which the projected data 
achieved maximized between-class variance and minimized within-class 
variance [7]. We individually implemented LDA on MRI, PET, and the 
other two modalities, and we adopted only one projection vector to 
calculate the value of the projected data as a score, as shown in Fig. 2. 
Finally, from LDA, we obtained scores representing AD-related patho-
logical progress. There were three scores for all modalities, one from 
MRI, one from PET, and one from the combination of CSF and genetic 
biomarkers. These scores contained pathological information from 
different modalities and performed an equal role when they were 
combined for AD multiclass diagnosis. 

3.3. Extreme learning machine-based decision tree 

Although ELM can be used as a multiclass classifier directly [8], to 
discriminate different stages of AD more accurately, a decision tree 
strategy was implemented with binary ELMs. For three-way classifica-
tion, the NC group was separated from the MCI and AD groups with one 
ELM first, and then, the MCI and AD groups were separated using 
another ELM. For four-way classification, the first ELM separated the NC 
and sMCI groups from the pMCI and AD groups, and then, two ELMs 
dealt with the classification of NC versus sMCI and pMCI versus AD. All 

Fig. 1. Overall framework of the proposed approach.  

Fig. 2. The example of LDA scoring strategy.  
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ELMs were pretrained using the corresponding pairs of groups. Gaussian 
kernels [8] were adopted for the binary ELMs. Let us assume that we 
have N training samples [x1, x2, ⋯, xN] and N labels, and xn represents 
the vector of the nth sample consisting of M features. Y ∈ RN×G is a 
ground truth label matrix with N rows. In each row, there are G elements 
corresponding to G groups, and the element of the true label is set to 1, 
while the others are set to − 1. When we obtain a new sample x, the label 
of x can be predicted as 

f (x)=

⎡

⎢
⎢
⎣

K(x, x1)

K(x, x2)

⋮
K(x, xN)

⎤

⎥
⎥
⎦(Ω + I/C)

− 1Y (2)  

where K (x, xn) is the Gaussian kernel described as 

K(u, v)= exp
(
− ‖u − v‖2

/γ
)

(3) 

and Ω is an N × N kernel matrix that is related only to the training 
samples, which can be calculated in the training phase as 

Ω=

⎡

⎢
⎢
⎣

K(x1, x1)

K(x2, x1)

⋮
K(xN, x1)

⋯

K(x1, xN)

K(x2, xN)

⋮
K(xN, xN)

⎤

⎥
⎥
⎦ (4) 

The variable C is a regularization coefficient, which was set to 1. The 
variable γ is a parameter of the Gaussian kernel, which was set to 10 
times the value of M. 

4. Experiments and results 

4.1. Data and experiment settings 

The data used in this study were downloaded from the ADNI dataset, 
which recruited over 1800 participants with ages above 55. As not all 
modalities were available for all participants, only those subjects who 
had MRI, PET, CSF, and genetic data at the baseline time point were 
chosen. Thus, we obtained 200 NC, 441 MCI, and 105 AD subjects. It was 
determined that 110 MCI subjects were converted to AD during the 
following three years. Therefore, they were labeled as pMCI. A total of 
208 MCI subjects remained as MCI and were labeled as sMCI. Moreover, 
123 MCI subjects with unknown final status were excluded from the 
four-way diagnosis. The demographic and clinical information of these 
subjects are listed in Table 1, including sample counts, ages, mini-mental 
state examination (MMSE), and clinical dementia rating scale sum of 
boxes (CDR-SB). All these data were downloaded from the ADNI web-
site. Specifically, the MRI, CSF, and genetic data were obtained from the 
data files of the TADPOLE Challenge, and the PET data were obtained 
from the UC Berkeley–FDG Analysis file. 

In the cells of the second row, the first number is the total number 
with the numbers of females and males in brackets. SD is the standard 
deviation. 

We considered the accuracy, recall, precision, and F1-score [11] to 
evaluate the performance of multiclass classification. The evaluation 
was conducted by five-fold cross-validation. 80% of the samples were 
used to train the LDA and classifiers, and the remaining 20% were used 

for testing. This trial was repeated five times with different 20% samples 
as the test set. To avoid sampling bias, we ran five-fold cross-validation 
100 times with randomly permuted samples, and the mean and standard 
deviation of these 100 runs were calculated. In particular, as MCI is the 
obscurest group, the ratio of MCI would influence the evaluation. 
Therefore, only 150 MCIs were randomly selected from the MCI group in 
each run in the three-way classification to ensure that the ratio of MCI 
was one-third of all groups. For four-way classification, the ratio of sMCI 
and pMCI was approximately one-half of all groups. Therefore, all 
samples were used. 

All the experiments were conducted using Python 3.6.4. The LASSO, 
PCA, and LDA algorithms were implemented using the Lasso, PCA, and 
LDA modules in the scikit-learn package. LASSO was trained with the NC 
and AD samples, which were not included in the subsequent experi-
ments. PCA was trained with all samples without knowing their labels, 
and the “n_components” parameter was set to 10 to retain top 10 major 
components. LDA was trained with 80% samples with their labels during 
five-fold cross-validation, and the “n_components” parameter was set to 
1 to retain the most discriminative component as score. The target age of 
age correction was set to 75, which is near the average age (73.3) of all 
subjects. 

4.2. Performance of proposed method 

To demonstrate the performance of the proposed method on multi-
class diagnosis, we compared it with the original method, in which the 
raw features were concatenated directly and classified using SVM. The 
results are shown in Fig. 3, from which we can observe that the proposed 
method can significantly improve the performance in terms of recall, 
precision, F1-score, and accuracy. In particular, the proposed method 
increased the accuracy by up to 66.7% in the three-way diagnosis, which 
is 11.6% higher than that of the original method, and by up to 57.3% in 
the four-way diagnosis, which is also 11.6% higher than that of the 
original method. We can also identify that the low performance of 
multiclass diagnosis is primarily due to the low values of recall and 
precision of MCI or sMCI and pMCI. Therefore we also show the 
confusion matrix in Fig. 4. We determined that, in the original method, 
all groups were likely to be misdiagnosed with neighboring groups, and 
the proposed method can reduce the ratio of misdiagnosis. 

We conducted experiments to reveal the impacts of all processes by 
adding different factors step by step. In each step, new factor was added 
to the framework of previous step, and 100 times 5-fold cross validation 
were repeated to calculate the performances of each step. The results are 
shown in Fig. 5. From these results, we determined that LDA had the 
most significant impact on the F1-score and accuracy, indicating the 
importance of LDA for this method. These results also demonstrated that 
the contributions of LASSO and PCA, and the ELM-based tree decision 
strategy, instead of SVM, can also improve the accuracy and F1-score. 
We also conducted experiments in different settings to thoroughly 
investigate the proposed method, and the results are listed in Table 2. 
ELM can be used as a multiclass classifier. However, the binary ELM- 
based tree decision can achieve a better performance, as shown in the 
first two rows of Table 2. The third to tenth rows show the impact of 
different modalities, and we determined that the MRI has the most 
important effect on the performance, followed by CSF and PET. More-
over, the genetic feature is the smallest data, but the performance also 
declined by approximately 1% in the four-way diagnosis without the 
gene information. In the last four rows, we compared the performance 
with different cross-validations. It can be observed that the performance 
in ten-, seven- and three-fold cross-validations were similar with the 
default (five-fold cross-validation). In contrast, a marginal decline is 
observed in the two-fold cross-validation, which indicates the robust-
ness of the proposed method. In Fig. 6, we investigated the effect of age 
correction: when age correction was used in alignment to different ages 
from 65 to 85, it had similar performance with the default setting 
(aligned to 75 years). 

Table 1 
The demographic information of subjects.  

Mean ±
SD 

NC AD MCI sMCI pMCI 

Count (F/ 
M) 

200 (93/ 
107) 

105 (36/ 
69) 

441 (191/ 
250) 

208 (92/ 
116) 

110 (47/ 
63) 

Age 73.9 ± 6.0 75.7 ±
8.0 

72.4 ± 7.4 71.8 ± 7.1 73.9 ±
7.2 

CDR-SB 0.0 ± 0.1 4.4 ± 1.6 1.4 ± 0.9 1.2 ± 0.6 1.9 ± 1.0 
MMSE 29.0 ± 1.2 23.2 ±

2.0 
27.9 ± 1.7 28.1 ± 1.7 27.1 ±

1.7  
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Fig. 3. Performance of the proposed method. (A) Performance of 3-way diagnosis. (B) Performance of 4-way diagnosis.  

Fig. 4. Confusion matrixes. The red numbers are ratios. (A) Confusion matrixes of 3-way diagnosis. (B) Confusion matrixes of 4-way diagnosis.  
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4.2.1. Comparison with other methods 
We also compared the proposed method with other studies pertain-

ing to multiclass AD diagnosis, and the results are listed in Table 3. 
Among these methods, the proposed method showed promising per-
formance in both the three- and four-way classifications. In recent years, 
CNN-based approaches have been proposed for AD detection, but most 
of them have been used in binary classification. To compare with these 
methods, we also conducted experiments in binary classification (using 
a binary ELM) of NC versus AD and sMCI versus pMCI. The comparison 
results are listed in Table 4. From these results, we can observe that the 
CNN-based approaches achieved superior performances in NC versus AD 
classification, which is better than the proposed method. However, in 
the classification of neighboring groups, such as sMCI versus pMCI, the 
proposed method demonstrated better accuracy. 

Fig. 5. Performance of multiclass diagnosis by adding different factors step by step.  

Table 2 
Performance in different settings.  

Different settings 3-way diagnosis 4-way diagnosis (%) 

Accuracy (%) F1-score 
(%) 

Accuracy (%) F1-score 
(%) 

Proposed 
method 

66.7 ± 1.4 64.9 ± 1.7 57.3 ± 0.9 55.7 ± 1.0 

ELM multiclass 65.5 ± 1.2 61.6 ± 1.7 55.5 ± 0.8 52.9 ± 0.9 
Only MRI 61.5 ± 1.2 59.0 ± 1.4 49.6 ± 0.7 46.8 ± 0.8 
Only PET 56.3 ± 1.2 54.8 ± 1.4 43.5 ± 0.9 43.1 ± 0.8 
Only CSF 55.0 ± 1.0 53.1 ± 1.3 40.3 ± 0.8 37.0 ± 1.0 
Without MRI 62.5 ± 1.5 61.5 ± 1.7 50.6 ± 0.8 49.6 ± 0.8 
Without PET 65.5 ± 1.2 63.6 ± 1.3 55.4 ± 0.8 53.3 ± 0.9 
Without CSF 63.9 ± 1.5 62.5 ± 1.7 54.6 ± 0.9 53.3 ± 1.0 
Without Gene 66.2 ± 1.4 64.3 ± 1.6 56.4 ± 0.9 54.8 ± 1.0 
Without Age 65.5 ± 1.2 63.3 ± 1.6 53.1 ± 1.0 51.9 ± 1.1 
10-fold CV 66.5 ± 1.3 64.7 ± 1.5 57.4 ± 0.7 55.7 ± 0.8 
7-fold CV 66.6 ± 1.3 64.9 ± 1.6 57.1 ± 0.7 55.4 ± 0.8 
3-fold CV 66.3 ± 1.5 64.7 ± 1.7 56.8 ± 1.1 55.3 ± 1.3 
2-fold CV 65.9 ± 1.6 64.4 ± 1.8 55.8 ± 1.6 54.4 ± 1.6 

Note: In cells, the two number represent the mean and standard deviation of 100 
runs. CV is the abbreviation of cross validation. 

Fig. 6. Age correction with aligning to different ages.  

Table 3 
Comparison with other methods.  

Methods validation 3-way 
accuracy 

4-way 
accuracy 

Nonlinear graph fusion [20] 4-fold CV 60.2% – 
Age-dependent z-score + LDA [24] 10-fold CV 63.0% – 
Multi-task deep learning [21] 10-fold CV 65.8% – 
Gaussian discriminative 

component analysis [11] 
9-fold CV 66.29% 53.9% 

Zero-masking deep learning 
architecture [22]  

– 53.8% 

Feature selection + Ensemble 
learning [14] 

10-fold CV – 54.4% 

Deep multi-task multi-channel 
learning [15] 

Fixed 
dataset  

51.8% 

This study 10-fold CV 66.5% 57.4% 
This study 5-fold CV 66.7% 57.3%  

Table 4 
Comparison with CNN based approaches in binary classification.  

Methods validation NC vs. AD sMCI vs. pMCI 

hybrid CNN and RNN [30] 5-fold CV 89.1% 72.5% 
Ensemble of deep CNN [19] 4-fold CV 99.3% – 
3D-CNN and FSBi-LSTM [17] 10-fold CV 94.8% 65.4% 
Multi-Modality 3D CNN [18] Fixed dataset 90.1% 76.9% 
3D densely connected CNN [31] Fixed dataset 97.4% 78.8% 
CNN and ensemble learning [32] 5-fold CV 84% 62% 
This study 5-fold CV 93.4% 81.2%  
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5. Discussion 

In this study, we applied an LDA-based scoring strategy for multi-
modal data fusion for the task of multiclass AD diagnosis. With the 
scores that were analyzed using LDA and other processes, such as age 
correction, LASSO, PCA, and ELM-based decision tree classifier, the 
proposed method achieved a superior performance than the original 
method for both three- and four-way diagnoses. The experimental re-
sults demonstrated that the LDA-based scoring can significantly improve 
the performance of multiclass diagnosis, indicating the important role of 
LDA in this method. 

LDA-based scoring is the key process in the proposed method. It can 
reduce the features of each modality into a single score. Different mo-
dalities reflect different aspects of the pathological changes of AD, such 
as the MRI reflects the cerebral atrophy and PET reflects the abnor-
malities in cerebral glucose metabolism. The information regarding the 
different pathological changes was contained in the features of different 
modalities. Therefore, directly concatenating these features is not an 
efficient method. Moreover, different numbers of modality features 
would lead to bias in classification. Therefore, it is reasonable to 
calculate scores representing different AD-related pathological changes 
using LDA, resulting in a more efficient the fusion of multimodal data. 
Feature reduction was primarily performed by LDA, although LASSO 
and PCA can also reduce features, the purpose of LASSO and PCA pro-
cesses was to eliminate useless and interferential components and help 
LDA to calculate more precise scores. 

Multiclass AD diagnosis is a challenging task. The performance of 
multiclass diagnosis is significantly lower than that of binary diagnosis 
for AD/NC [20], because there are several similarities between MCI and 
AD or between MCI and NC. The inclusion of MCI would lead to a high 
probability of misdiagnosis between MCI and NC or between MCI and 
AD. We have shown the confusion matrix of the three- and four-way 
classifications in Fig. 4, in which we can observe that many mis-
diagnoses occurred between neighboring groups. With the proposed 
method, the ratios of misdiagnosis between neighboring groups were 
reduced. However, there were still several MCI subjects who were 
misdiagnosed as other groups. These results indicate that the precise 
classification of MCI or sMCI and pMCI is the key to improving the ac-
curacy of AD multiclass diagnosis, and our future work will study a more 
precise method for the discrimination of MCI from AD and NC. 

The comparison results in Table 4 indicate that the CNN is a powerful 
technique in image analysis, and the result show a superior performance 
in NC versus AD classification. However, the performance was not ideal 
when discriminating between sMCI and pMCI. The reason for this might 
be that the difference between NC and AD is obvious, and it is easy for 
CNN to learn the AD-related pathological information from the training 
phase. However, the difference between sMCI and pMCI or between 
neighboring groups are subtle and inter-subject variables can easily 
result in interference, which hinders the efficiency of the CNN. There-
fore, we chose the extracted features from MRI and PET rather than CNN 
for AD multiclass diagnosis in this study. In the future, for the utilization 
of CNN in multiclass diagnosis, we assume that whole brain segmenta-
tion should be considered, which can extract morphological features for 
multiclass classification. 

Cognitive scores were not included in this study, although their in-
clusion can achieve a higher accuracy [33]. As cognitive scores were 
directly used in the clinical diagnosis, especially the labels of ADNI were 
primarily dependent on MMSE and CDR-SB, we thought the results 
would be biased and overestimated if the cognitive scores were used. 
Therefore, we excluded the use of cognitive scores in this study. 

6. Conclusion 

In this study, we proposed an LDA-based scoring strategy approach 
for AD multiclass diagnosis in the presence of four modalities, i.e., MRI, 
FDG-PET, CSF, and genetic features. The LDA was used to calculate a 

score representing the pathological information from each modality, 
and the scores from different modalities ensured that the classifier could 
easily discriminate between different groups. LASSO and PCA were used 
to exclude irrelevant and interferential components before LDA, and a 
binary ELM-based tree decision classifier was built for multiclass clas-
sification. The experimental results indicated that the LDA scoring 
significantly improved the multiclass diagnosis. Benefiting from the 
information obtained from multiple modalities and the scoring strategy, 
we achieved a promising performance with an accuracy of 66.7% and 
F1-score of 64.9% for three-way diagnosis, and an accuracy of 57.3% 
and F1-score of 55.7% for four-way diagnosis, which were significantly 
better than the original method. When compared to other studies, the 
proposed approach also showed a better performance. Although multi-
modal data help to improve the performance of AD diagnosis, the 
requirement of too many modalities would limit the practical usage of 
this approach. However, the more efficient multimodal fusion approach 
in this study is still useful for further AD studies, such as AD longitudinal 
trajectory modeling. 
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